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This paper reviews the properties of the theoretical predicted local virtual bound states 

induced by impurity in unconventional superconductors and the differential conductance 

data obtained in doped high temperature superconductor, BSCCO, using STM. The 

spatial patterns of the STM differential conductance resemble those of the impurity 

induced resonance states as predicted near the Fermi surface in many aspects, providing 

STM a promising method to understand the pairing mechanism in high temperature 

superconductors. 

I. Introduction 

To understand the fundamental rules behind the universal phenomena, scientists 

always prefer to study a pure system because impurities often cause great changes in the 

states of the system, making things much more complicated and detaining experimental 

testifying of the theories. However, in a later time, people found that controlled doping of 

impurities could achieve some desired properties. For example, the most salient 

application of impurities is in semiconductor industry. All transistors, building blocks of 

the semiconductor industry, consist of n-dope and p-doped semiconductors. In the solid-

state laser industry, impurities are doped in the laser rod as the pumping source. More 

strikingly, not only used intentionally to achieve the desired properties of a system, 

impurities also help to understand properties of a pure system. This is the case in 

superconductors.  

Impurity effects in superconductors were first noticed and studied in low temperature 

superconductors [1-5] in 1960s when people were still searching for higher temperature 



superconductors. The pioneer work of Abrikosov and Gorkov [2] predicted the gapless 

superconductivity in the lowest Born approximation, which was observed by M. A. 

Woolf and F. Reif in 1965 [4]. This is followed by the realization that magnetic 

impurities may play the role of pairing breakers in s-wave superconductors. Further 

investigation [3] shows that magnetic impurity induced a bound state in the energy gap 

localized in the vicinity of the impurity atom, which grows to a bound states band and 

finally fills up the gap in the limit of finite impurity concentration. On the other hand, 

although the non-magnetic impurities will not change the bulk properties in conventional 

superconductors, they do have effects on the local density of states in a resonance 

scattering model [5]. 

Inspired by the prediction of the impurity effects on the local density of states, people 

realized that doping impurity provides a potential method to understanding the pairing 

mechanism in the unconventional superconductors, such as HTS, heavy fermion 

superconductors and other higher order superconductors. It has been predicted, also 

suggested by some experiment results [6-11], that high temperature superconductor has 

pairing states of 22 yx
d


 symmetry. Both magnetic and non-magnetic impurities are pair-

breakers in unconventional superconductors. Inner gap quasiparticle states induced by the 

nonmagnetic impurities will dramatically modify the local density of states around the 

impurities within a range of coherence length scale [12-15]. Measuring the tunneling 

current through the tip of a high resolution STM above the HTS surface, we can obtain 

the spectrum and spatial variation of the local density of states, which give information 

about the order parameter and pairing symmetry in high temperature superconductor [16-

20]. 



The main purpose of this paper is to review the impurity effects on unconventional 

superconductors, especially high temperature superconductors, the current understanding 

of the impurity induced intragap states, and the latest experiment results. This paper is 

divided into four sections. In the second section, I will first introduce the BCS picture of 

quasiparticles in clean superconductors. In the third section, I will focus on the single 

impurity in d-wave superconductors. Then I will summarize in the last section.   

II. BCS description of excited states in superconductor 

A certain metal becomes superconducting below its transition temperature with the 

presence of Cooper pairs, which can transport in the metal with zero resistance. Cooper 

pair forms whenever there is an attractive interaction between electrons. In conventional 

superconductors, phonon-mediated scattering produces the attractive interactions between 

conductance electrons, resulting in the superconductivity and isotropic or nearly isotropic 

energy gaps for quasiparticles at the Fermi surface.  

At zero temperature, the distribution of the probability of a Cooper pair, a couple of 

electrons with opposite wave vectors and spins (  kk


, ), being occupied resembles the 

normal metal Fermi function at Tc. At finite temperature below Tc, some Cooper pairs are 

broken and the electrons forming these Cooper pairs are excited to states that are not 

pairing for certain. There is a minimum excitation energy, , for these excitation 

electrons so that the density of the excitation states is completely depleted.  

According to BCS, the pairing Hamiltonian is 
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Taking the zero of kinetic energy to be 
FE , the Hamiltonian becomes 
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where Fkk E  , klV  are the matrix elements of the interaction potential, kn  is 

number operator, 

kc  and kc  are the creation and annihilation operators, respectively.  

Using canonical transformation and then diagonalizing the model Hamiltonian, we 

obtain 
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2

kv  is the probability for the pair (  kk


, ) to be occupied and 
2

ku  is the 

probability for the pair not being occupied. 

0k ( 

1k ) is the operator that creates an 

electron in k (  k ) state with a probability of 1. On the other hand, 0k ( 1k ) is the 

operator that annihilates an electron in k (  k ) state with a probability of 1.  

The first term in Eq. (3) is BCS ground state energy term, while the second term 

represents the quasiparticle excitations of the system, which are often called Bogoliubons. 

The energies of the excitation states are found to be 
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In the BCS approximation that VVkl  , k =  is a constant. Clearly, k  is the 

minimum excitation energy for the Bogoliubons.  



The density of the excitation states is  
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Clearly, in a clean superconductor the density of states are deplete in the energy gap. 

All states are pushed above the energy gap, forming two peaks at the gap edge  . 

III. Impurity problems in high temperature superconductors  

All high temperature superconductors have strongly layered crystal structure 

containing one or more CuO2 planes with copper and oxygen atoms in a square lattice, 

which is believed to be responsible for the superconductivity. Although the microscopic 

picture is still not clear, it is believed that the superconductivity in HTS is based on 

Cooper pairs of spin singlet form [22-29]. However, the pairing mechanism has not been 

confirmed and the microscopic theory for HTS is still lacking. Present knowledge of the 

superconductivity in HTS includes that electron interaction in HTS is pretty strong spin-

fluctuation mediated interaction depending on both frequency and momentum [33], 

unlike the phonon-mediated weak interaction between Cooper pairs in conventional 

superconductors, and such an interaction favors 22 yx
d


 pairing and gives rise to a 

momentum-dependent gap which has four nodes. The flux quantization experiments only 

support the d-wave pairing but can not give information about the specific pairing 

symmetry, for example, 22 yx
d


 as proposed by N.E. Bickers et al. [30-37]. Measuring 

energy gap symmetry provides complemental evidence of the pairing mechanism. For 

example, angle-resolved photoemission spectroscopy (ARPES) can measure the gap 

energy along different directions in k space. As the prediction for 22 yx
d


pairing, a gaplike 



feature is found to develop below Tc along the kx and ky direction, but not along the 

directions rotated by /4 from them in the a-b plane. 

Recently, more convincible evidences for 22 yx
d


 pairing are found in experiments 

measuring the impurity induced quasiparticle states inside the energy gap in low 

temperature. The impurity induced quasiparticle states are usually localized in a 

microscopic or mesoscopic scale. Thus detecting of these states only become feasible 

after the development of high-resolution STM. The quasiparticle states are probed by 

measuring the differential conductance, which is proportional to the local density of 

states of the sample at the tip position. The experimental results [17-20] of the local 

density of states in BSCCO are strikingly consistent with theoretical prediction 

[12,14,38].  

I will review some important results that support the 22 yx
d


 pairing symmetry in HTS 

in the past decade. Impurity induced intragap states in unconventional and anisotropic 

superconductors have been extensively studied since 1993. The requirement and 

properties of the nonmagnetic impurity induced quasiparticle states in d-wave 

superconductors was discussed in detail by A.V. Balatsky et al. in 1995 [12]. I will 

basically following their calculation to give the spectrum and spatial variation of the 

quasiparticle states and compare some later experimental results with the predictions.  

a) Single nonmagnetic impurity in d-wave superconductors  

A single nonmagnetic impurity in unconventional superconductors is usually 

considered as a scattering scalar potential, )( 00 rrUU   , with the impurity at 0r . The 

scattering of a quasiparticle from a single impurity in d-wave superconductor can be 



described by a T matrix,  T , which is independent of wave vector.  The Green function 

in the presence of a single impurity is  
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Where both   0

k
G  and  T  are in Nambu space. The impurity induced states are 

given by the pole of the T matrix. Solving the poles of the T matrix for d-wave 

superconductor, we can find the energy of these states to be  
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where 0cosc , indicating the strength of the scattering. 0  is the phase shift due to the 

impurity scattering. As c approaches 0, the system approaches unitary limit and the 

scattering gets stronger and stronger. For a weak scattering, c <~ 1. In the Born 

approximation limit, c>>1. Eq. (14) shows that the energy of the quasiparticle state is a 

complex value with the real and imaginary parts representing the energy and decay rate 

of the impurity induced state, respectively. So, these states are usually called virtual 

bound states due to the finite decay rate, in contrast to the bound states induced by 

magnetic impurities in conventional superconductors. In the unitary limit, 0c  and 

2/cos   , the decay rate gets infinitely small and the virtual bound states becomes a 

marginally bound one at zero energy. In the weak scattering limit, the energy of the 

virtual bound state approaches 0 . In the Born approximation limit, no bound state is 

found. (Fig 1)  



 

Fig. 1. the energy  "'  i  of the virtual bound state in the one-impurity problem, given by Eq. 

(x), as a function of impurity strength c: the shown quantities are '  (solid line), "  (dashed line), and 

" / '  (chain-dashed line). A spherical Fermi surface and 2cos0
k
  have been assumed. The 

width "  of the virtual bound state is always smaller than its energy '  in the neighborhood of unitary 

scattering. In contrast, for weak scattering c ~ 1, " ~ '  and an impurity-induced virtual state does not 

exist. The inset shows a comparison between the exact result and the asymptotic approximation (dotted 

lines), as computed to logarithmic accuracy by Eq. (x) for   [12] 

 

Plots in Fig 1 are the exact numerical results of the energy and decay rate of the 

single nonmagnetic impurity induced state as a function of c. Fig 1 indicates that a strong 

interaction potential is the requirement for the virtual bound states to exist in the energy 

gap. Thus, for a point scattering potential, )( 00 rrUU   , the density of the 

quasiparticle states localized around the impurity site will be greatly enhanced.  

The enhanced local density of states in HTS was observed in Bi2Sr2CaCu2O8+ 

(BSCCO) single crystals by Hudson et al. at low temperature [17]. In contrast to the 

expectation of a uniform differential conductance map at zero bias (voltage between tip 

and sample) in clean BSCCO samples, a large number of randomly distributed similar 

bright area with a diameter of about 3 nm were observed (Fig 2a).  These atomic bright 

features are interpreted as the enhanced LDOS near the Fermi surface, referred as quasi-

particle scattering resonances (QPRSs) in the original paper. The diameter of the bright 

area is consistent with the prediction of localization of the impurity induced quasiparticle 



in the energy gap. The measurement of the differential conductance as a function of 

sample bias in a clean area (black area in Fig 2a) and a QPRSs area (Fig 2b) show very 

different features. The superconducting peaks, which indicate the quasiparticle states 

pushed to the edges of the energy gap, are suppressed at the center of a QPRS, implying 

the superconductivity being destroyed.  The small lump in the middle of the energy gap 

peaking below the Fermi level indicates the quasiparticle states induced by scattering 

from an attractive potential. Both the low-energy LDOS feature and the diameter of the 

QPRSs are consistent with the prediction of Balaktsky et al. remarkably [14]. 

.  

        

Fig 2. (a) A 130-nm square zero-bias conductance map in BSCCO single crystal. The color scale is in 

terms of percentage of normal state conductance. (b) Differential conductance versus bias voltage. The 

dashed line is taken in a clean area and the solid line is taken in a QPRS area. [17] 

 

With the controlled doping of impurities, strong QPRSs were observed in Zn-doped 

and Ni-doped BSCCO (Fig 3a,b). In addition, vacancy induced quasiparticle states (Fig 

3c) were proposed because of its universal existence in a large variety of samples, 

including impurity doped and undoped ones.  
 

 

 

(b) (a) 



 

Fig 3. (a) Comparison of spectra directly above Zn impurity site (red) and the site far from impurity (blue) 

[19]; (b) comparison of spectra directly above Ni impurity site (red) and away from Ni (blue) [39]; (c) 

comparison of spectra directly above native defect (thick solid line) and away from defect (thin solid line) 

[20, 39]; 

 

b) Spectrum of the virtual bound states at the strong scattering impurity sites  

As mentioned before, a strong scattering potential is the requirement to induce the 

quasiparticle states and then enhance the LDOS enough to be detected by STM. The 

strongly scattering impurity is pair-breaker in d-wave superconductors, producing 

dissimilar spectrum for hole-like and electron-like quasiparticles, and create distinct 

spatial variation features for the quasiparticle scattering resonances [14].  

In the strong scattering case, the density of states is negligible at high energy ' , 

and recovers the clean superconductor states at ' , where   is the probe energy of 

STM and '  is the resonance energy. So we will focus on the QPRSs spectrum for 

'~   at the impurity site (Fig 4). The hole-like QPRS spectrum (Fig 4b) peaks around 

the resonant energy and obtain the maximum amplitude at ' . As   decreases, the 

peaks get sharper but weaker and the virtual bound state reduces to a marginally bound 

state at zero energy. As   increases, the peak persists to c ~ 1, where it disappears as a 

broad structure.  On the other hand, the electron-like QPRS spectrum (Fig 4b) only shows 

(b) (a) (c) 



a shallow feature in this regime. This feature dominates while Flr  , where FF kl /2  

is the Fermi length. 

 

 

Fig 4 The local density of states  ,0rN  of a d-wave superconductor for (a) 0  and (b) 0  

at the impurity site as a function of energy   for c = 0.02, 0.06, and 0.10 (from bottom to top). Here, 

0 = 0.0.3 0  is the impurity resonance energy for c = 0.10. The density of states   00 / N  of a 

clean d-wave superconductor is shown by the dashed line. Note the different density scales. 

 

c) Spatial variation of the quasiparticle resonance states 

The QPRS states are localized [40, 14] to the impurities in a scale comparable to the 

coherence length of the superconductor. In d-wave superconductors, the density of the 

impurity states,  ,rNimp


 decays as the inverse second power of r , the distance from 

the impurity, along the nodes of the gap function, 

     220 ]0,Re[0,  rrGrNimp 


      (15) 

and exponentially in the vicinity of the extrema of the gap function, 

      /2]/[0, r

imp errN 
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      (16) 

where      /Fv  is the angle-dependent coherence length of the superconductor. 

 ,rNimp


 gets saturated at 0lr  , where '/0  Fvl   is the impurity induced length [12].  



More detailed and rapid varying features [14] of  ,rNimp


 occur at a distance 

comparable to three characteristic lengths: FF kl /2  is the Fermi length, 00 / Fv  

is the coherence length of the superconductor and 0l , the impurity induced length.  The 

requirement of these characteristic lengths for the virtual bound state is 00 llF  .   

   

Fig 5 The local density of states  ,rN


 of a d-wave superconductor for (a) 0  

and (b) 0  as a function of position r = (x,y) around a repulsive impurity placed 

at r = 0. The impurity resonance energy is 0 = 0.0.3 0  and 6/0 Fl . The 

maximum values of  0, rN


 are approximately 8.3 and 2.9 (in units of NF). The 

shaded profile shows the projection of  0, rN


 on the vertical plane. [14] (c) 

differential tunneling conductance at resonance energy versus distance r from the center 

of a Zn scatterer, along the a-axis or b-axis (gap-node) directions (shown as open circles) 

and along the Cu-O bond (gap-maxima) directions (shown as open squares). Each data 

point is the local DOS at distance r averaged over an inclusive angle of 10
o
 around the 

given directions [19] 

 

Fig 5a, 5b show the calculation of the spatial variation of the local density of states of 

a d-wave superconductor when the STM bias voltage set at resonance energy ' . At 

distances 0r , the density of the states is most strongly enhanced in the horizontal 

and vertical directions (the extrema directions of the d-wave energy gap) for both hole-



like and electron-like states.  As the distances increase to 0~ r , the density of states is 

enhanced along the diagonal directions for the hole-like resonance ( ' ) and in the 

directions close to the diagonals for the electron-like resonance ( ' ). Further away, 

the density of states decays quickly to be saturated. Fig 5c shows the spatial variation of 

the differential conductance (normalized to peak value) around an impurity in Zn-doped 

BSCCO along both the gap-node and gap-maximum directions. Although these data can 

not be fit to the power law and exponential law as predicted in Eq. (15) and Ea. (16), the 

decay rate is clearly faster in the gap-node directions.  

These predicted star-like patterns of the density of QPRSs have been observed in Zn-

doped and Ni-doped BSCCO samples (Fig 6). 

 

 
 

Fig. 6. Experimental STM impurity spatial patterns at resonance [39] (a) STM intensity around Ni impurity 

site at 9 mV [18]; (b) STM intensity around Ni impurity site at -9 mV [18]; (c) STM intensity around Zn 

impurity site at -1.2 mV [19]; (d) STM intensity around native defect, possibly Cu vacancy at -0.5 mV [20] 
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Even with the striking observation of the four fold local QPRSs pattern around the 

impurity in BSCCO that is consistent with many models, discrepancies exist between the 

predicted local DOS and the measured data by STM. All the experiment data were 

obtained on the non-superconducting BiO crystal layer and thus it is not sure that the 

intrinsic wave function in the superconducting CuO layer is measured. On the other hand, 

an accurate calculation of the wave function of the impurity induced bound states in the 

energy gap is still lacking. The impurity scattering potentials in the previous models were 

all simplified as pointlike scalar potentials, which may also contribute to the 

discrepancies. Recent ab initio calculation of the impurity in CuO layer [39] shows that 

the effective magnitude of the potential of three kinds of impurity (Zn, Ni, and vacancy in 

and on CuO plane) is consistent with phenomenological fits of previous scalar potential 

models to STM resonance energies, but the effective potential ranges are quite short of 

order 1 Å with weak long-range tails. More strikingly, all the potentials are remarkably 

anisotropic in space, oscillating between repulsive and attractive potentials from the 

impurity center. 

IV. Summary 

In this paper, I reviewed the simplest model of the single nonmagnetic impurity 

problem in HTS and corresponding STM data. These models predicted the intragap 

virtual bound state induced by nonmagnetic impurity, which can modulate the local 

density of states around the impurity dramatically. These virtual bound states are 

localized to the impurity in a scale comparable to the coherence length in the 

superconductor. The density of QPRS states enhanced dramatically around the impurity 

in a scale of coherence length along both the gap-node and gap-maximum directions in 



the d-wave superconductors while the decay rates of the resonance state wave function 

obey a power law along the gap-node direction and an exponential law along the gap-

maximum direction, resulting in an oscillating star-like pattern of the local density of 

states. STM is proposed as a singular tool to detect the spatial pattern of the QPRSs due 

to its particular sensitivity to the DOS near Fermi energy and its ability to measure both 

the local density of states and the topography of superconductors in atomic scale at the 

same time. The pairing mechanism and the gap symmetry then can be deduced from the 

differential conductance obtained by STM above the impurity sites. However, detail form 

of the impurity scattering potential and long-range hoping between impurities should be 

considered and may give a better explanation of the discrepancy between the theoretical 

prediction and the real LDOS pattern obtained by STM. A more detail and complete 

review about the impurity induced bound states in unconventional superconductors has 

been done by Balatsky et al. [41] 
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